Book Reviews
|
|||
Go to Executive Times
Archives |
|||
The
Radioactive Boy Scout: The True Story of a Boy and His Backyard Nuclear
Reactor by Ken Silverstein Rating: ••• (Recommended) |
|||
Click on
title or picture to buy from amazon.com |
|
||
|
|||
Neighborly Ken Silverstein’s book, The
Radioactive Boy Scout, tells the story of how a young man in No wonder no one believed David’s wild
tales. He was a student who could not spell millions but claimed
nonetheless to be conducting advanced research in his backyard. David’s
academic mediocrity obscured the extraordinary talent he had in one area, and
his seeming ordinariness proved to be an accidental yet effective cover for
his research efforts. Doubtless, he preferred it this way. For beneath the
blank exterior, his thoughts were bubbling away in ways that would later
astonish those who knew him. For his sixteenth birthday, Ken bought
David a used brown When he wasn’t with Heather, David was
stepping up his search for as-yet-unattained elements. His success in
obtaining sodium and phosphorus led him to grow more ambitious—and reckless.
He was tired of fooling around with the elements at the lower end of the
periodic table; he was ready to move on to some of the more exotic
substances, especially numbers 84 and up. Here David faced what at first glance
appeared to be an insurmountable obstacle—namely, that the radioactive
elements that so intrigued him were all tightly regulated by the federal
government. But David had discovered a secret, which had been first revealed
to him when he read in his Boy Scout materials about polonium and americium:
Many household and consumer items contain radioactive elements. Perhaps they
contained only small quantities and certainly not in a pure form, but David
figured he could devise means of isolating and gathering radioactive elements
from store - bought goods. David needed expert advice to discover
additional natural and commercial sources of radioactive materials. Gherardini and Young were quite knowledgeable about
radioactivity, but he feared that his teachers would get suspicious if he
asked too many pointed questions. It would be better, he decided, to consult
out-of-town experts who didn’t know him and to pretend that all of his
questions were purely hypothetical. And he knew just where to turn for
help. The final page of his scout pamphlet contained a list of government
agencies and industry groups that scouts could go to for additional
information: the Department of Energy, the Nuclear Regulatory Commission, the
American Nuclear Society, and the Edison Electric Institute. David found a few other nuclear-related
organizations on his own and began writing dozens of
letters of inquiry, sometimes to multiple sources at the same organization.
Initially, he identified himself as a student seeking information for a
school project, but it occurred to him that requests from a teacher might be
treated with more respect. He came up with the idea of passing himself off as
“Professor” David Hahn, an earnest, dedicated physics instructor at David’s letters didn’t fool everyone,
probably because Professor Hahn, even when consulting a dictionary. misspelled so many words and made so many elementary
grammatical errors. Some letter recipients might also have found it odd that Still, David was sufficiently steeped
in the discourse of nuclear engineering to con some government and industry
experts into believing that he was a teacher and professional colleague. He
got a reply to about one of every five letters he sent out. Even then, he could never state his
true intentions, so much of the information he received in response was of
only marginal value. The American Nuclear Society sent Professor Hahn a
teacher’s guide called Goin’Fission, which
included games such as a word search where students circle hidden terms like
fuel rod, breeder, and control rods. Yet much of what he received provided
useful tips. Dreams and Dragons, another brochure sent by the American
Nuclear Society, was no more sophisticated than Coin ‘Fission, but it
proffered one amazing piece of information. The mantle used in commercial gas
lanterns—the silky bag that looks like a doll’s stocking and conducts the
flame—is coated with a compound containing thorium— 232, which makes it glow
especially brightly. A silver-white metal discovered in 1828 by Swedish
chemist Jons Jakob Berzelius and named after Thor, the Norse god of thunder,
thorium is number 90 on the periodic table, two spots below
uranium. It is intensely radioactive and has a half-life of fourteen billion
years. The Nuclear Regulatory Commission, too,
proved to be a source of abundant information. The NRC was created in 1975 to succeed the
Atomic Energy Commission and was every bit the industry lapdog that its
predecessor agency had been. The NRC is a fee-based agency that gets its
budget not from taxpayers but from the corporate plant owners, who are
required by law to support it. Since the plant operators—among the biggest
are Westinghouse Electric, General Electric, and the Southern Company—despise
regulation and fees, they are forever lobbying to slash the NRC’s budget. During the 19908,
the NRC’s
number of safety inspectors was slashed by 20 percent. The NRC’s
most important contribution to David’s nuclear quest was a list of commercial
sources for many radioactive materials. This list was part of a large packet
of background reading and was meant to show, reassuringly, that many
industrial and household products contain small amounts of radioactive
material. David, though, viewed it as a shopping list and guide. It wasn’t
possible for him to purchase all the items on the list—for example,
industrial shipping containers made with trace amounts of uranium—but the
list did supply several options that were more pragmatic, at least for
someone with David’s talents and perseverance. For example, tritium, a
radioactive gas used to boost the power of nuclear weapons, is utilized in
the manufacture of glow-in-the-dark gun and bow sights and to light exit
signs on highways and in theaters. He learned that hospitals carry
cobalt-6o to treat cancer and that thorium is also found in certain ores. He
had already known that uranium was contained in pitchblende and now read that
it was once used in a glaze applied to orange-colored Fiesta dishes made in
the 193 Os. David also
discovered that in the The Record, a New Jersey newspaper, reports that
exposure levels from commercial sources of radiation are generally minimal,
but the NRC has recorded hundreds of cases in which Americans received doses
higher than deemed safe by the federal government. A By now, David had more than enough
information to jump-start his research. “I kept getting more and more pumped
up,” he later said of these heady days of exploration and discovery. David
might have recalled the Curies smashing their tons of Bohemian ore or Fermi
with his atomic pile beneath the football stadium at the David now replaced his first Geiger
counter, the one he’d made from a kit for his merit badge, with a more
sophisticated model that he purchased from a mail-order house in To further aid his radioactive
scavenger hunt, David distributed a list of desired items to a few friends.
Several agreed to help him, though they still didn’t take his activities too
seriously. “I thought the most he’d do was ruin any chance he had of having
children,” Andy Hungerford said glibly. Despite the lack of faith displayed by
his peers, David slowly yet methodically began to collect the materials on
his shopping list. He did take some moderate new precautions before embarking
on this phase of his hunt. He bought a charcoal-filter gas mask and
“borrowed” an old lead-lined protective suit from a government civil-defense
agency in David’s first triumph, a modest one,
was isolating a sample of polonium, which he got by buying a few
electrostatic brushes through the mail for about twenty dollars apiece. The
dark brown camel-hair brushes were about three inches long. A stick-on label
next to a thin aluminum bar on the plastic handle warned: “Radioactive:
Polonium-210 inside.” David donned a pair of dish-washing gloves and used a
wire cutter to bend back the corner of the aluminum strip. With tweezers, he
pulled out the tiny silver strip of polonium and dropped it into a vial. Americium, which was first identified
by Seaborg and three other scientists during the
Manhattan Project, proved to be just as simple an acquisition. David got his
first batch (but by no means his last) during a scouting trip to Lost Lake
Summer Camp. While most of the boys were sneaking into the nearby Girl Scouts
camp, David executed a blitzkrieg raid on several unoccupied cabins and
liberated smoke detectors from the ceilings. David wasn’t sure where the americium
was located, so he wrote to a smoke-detector manufacturer, BRK Brands in Buoyed by these early and easy coups,
David’s ambition soared: He now decided to go after thorium. Thorium was
originally used to put the fluorescence in gas street lamps. Because it has a
melting point of about 3,3oo degrees centigrade, it is nowadays employed in
the manufacture of airplane-engine parts that reach extremely high
temperatures. Any individual or company possessing thorium must have a
license from the NRC, and the NRC is stingy in doling them out. Beyond a few
aerospace manufacturers and university labs, thorium is not generally found
in commercial or academic settings. David knew from Dreams and Dragons that
thorium dioxide is found in gas-lantern mantles. Manufacturers say the
lanterns emit only a low level of radiation, though they recommend that
campers wash their hands after changing the mantle. On the other hand,
researchers in David began contacting surplus stores
that sold hunting and camping equipment. After a few dead ends, he found and
bought a few dozen old lantern mantles from a shop called Ark Surplus, then
reduced them to ash with a blowtorch in the potting shed. For David, handling dangerous items was
fascinating and gave him a real sense of power. Soon, he began carrying his
radioactive finds to school, to show off. First, he brought his strips of
polonium—wrapped in a packet of aluminum foil—and the plastic handle with the
stick-on radioactive-warning label. The polonium wasn’t much to look at,
though, nor did it impress anyone. One kid he showed the strips to said they
were probably all that David had and challenged him to bring in something
else—if he really had it. The next day, David came prepared, carrying in his
backpack a Geiger counter and a Ziploc bag that was one quarter full of
thorium ash. He invited a group of five kids to come with him, and they
slipped into an empty chemistry classroom. David placed the Baggie on a lab
table and told the kids it was thorium. “Oh, yeah,” said one of the kids.
“That’s nothing but dirt.” It was exactly what David had expected.
With a flourish, he pulled the Geiger counter from his backpack and urged the
skeptic to test the Baggie. When the kids in the room heard the Geiger
counter begin to click loudly, they no longer doubted David’s claims. In
fact, they were so worried about being irradiated that David had to calm them
by explaining that thorium emits alpha particles, which don’t pass through
plastic. “A lot of the kids had always said I was full of bull, that I
couldn’t get stuff like thorium,” he recalled with a sly grin. “You should
have seen their faces when they heard the Geiger counter.” A few All the while, David was becoming more
and more versed in the esoterica of nuclear
physics. Based on what he could understand when David began riffing on his
acquisitions and discoveries, Ken concluded that his son was exaggerating the
scope of his research in order to attract attention. Still, he decided he
should look more deeply into his son’s activities. He took David to meet with
a chemistry professor he knew at nearby Other odd occurrences soon heightened
his fears. First came the pill vials he found hidden in David’s room, filled
with something that looked like paint flakes. Then there were the letters and
boxes that came to the house from government agencies and companies scattered
across the country. But David convinced his father that all this was part of
research he was doing for scouting projects or for school. Ken chose to take
him at his word. “He’s a clever kid, and he was always careful to make sure
that I never found anything too incriminating,” Ken later said by way of
explaining his laissez-faire approach to parenting. “I never saw him turn
green or glow in the dark. I was probably too easy on him.”
Michael and Patty were equally indulgent of David’s experimenting.
Naturally, they thought it odd that he had taken to wearing a gas mask in the
shed and would sometimes discard his clothing after working there until two
in the morning, often by flashlight, but they chalked it up to their own
limited educations. “I was suspicious for a while there,” Michael said, “but Patty
thought he looked cute.” Read
The
Radioactive Boy Scout and lose some sleep about what cute things your
kids or your neighbors might be doing in your own backyard. Steve
Hopkins, August 26, 2004 |
|||
|
|||
ã 2004 Hopkins and Company, LLC The recommendation rating for
this book appeared in the September
2004 issue of Executive Times URL for this review: http://www.hopkinsandcompany.com/Books/The
Radioactive Boy Scout.htm For Reprint Permission,
Contact: Hopkins & Company, LLC • E-mail: books@hopkinsandcompany.com |
|||